[Google deepmind-github] Evaluation and calibration with uncertain ground truth | ||
---|---|---|
|
||
[Google deepmind-github] Evaluation and calibration with uncertain ground truth This repository contains code for our papers on calibrating [1] and evaluating [2] AI models with uncertain and ambiguous ground truth.
https://github.com/google-deepmind/uncertain_ground_truth [1] Stutz, D., Roy, A.G., Matejovicova, T., Strachan, P., Cemgil, A.T., & Doucet, A. (2023). [Conformal prediction under ambiguous ground truth](https://openreview.net/forum?id=CAd6V2qXxc). TMLR. [2] Stutz, D., Cemgil, A.T., Roy, A.G., Matejovicova, T., Barsbey, M., Strachan, P., Schaekermann, M., Freyberg, J.V., Rikhye, R.V., Freeman, B., Matos, J.P., Telang, U., Webster, D.R., Liu, Y., Corrado, G.S., Matias, Y., Kohli, P., Liu, Y., Doucet, A., & Karthikesalingam, A. (2023). [Evaluating AI systems under uncertain ground truth: a case study in dermatology](https://arxiv.org/abs/2307.02191). ArXiv, abs/2307.02191.
|
||
이전글 | [Prof. Hongbin Liu, JHMZ] Soft sensor for PM10 uisng adaptive boosting DL model | |
다음글 | [보고서] Scope 3 측정 가이드북 & [환경부] 온실가스 배출권 거래제 국가배출권 할당 계획 |